Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).
Zhang, Q., Deng, K. & Wilkens, L. et al. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).
Hu, H. et al. Highly stabilized and efficient thermoelectric copper selenide. Nat. Mater. 23, 527–534 (2024).
Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).
Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).
Jia, B. et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 384, 81–86 (2024).
Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).
Xing, T. et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) co-doped GeTe. Adv. Mater. 33, 2008773 (2021).
Liu, C. et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Sci. Adv. 9, eadh0713 (2023).
Yu, Y., Xu, X. & Bosman, M. et al. Germanium-telluride-based thermoelectrics. Nat. Rev. Electr. Eng. 1, 109–123 (2024).
Zhang, Z. et al. Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).
Zhou, Z. et al. Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat. Commun. 14, 2410 (2023).
Xie, L. et al. Screening strategy for developing thermoelectric interface materials. Science 382, 921–928 (2023).
Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723 (2020).
Xie, L. et al. Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%. Sci. Adv. 9, eadg7919 (2023).
Fu, Y. et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy Environ. Sci. 15, 3265–3274 (2022).
Liu, W. & Bai, S. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. J. Materiomics 5, 321–336 (2019).
He, R., Schierning, G. & Nielsch, K. Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv. Mater. Technol. 3, 1700256 (2018).
Liu, W. et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 1, 13093–13100 (2013).
Chen, L., Mei, D., Wang, Y. & Li, Y. Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties. J. Alloys Compd. 796, 314–320 (2019).
Zhang, J. et al. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices. ACS Appl. Mater. Interfaces 15, 22705–22713 (2023).
Ying, P. et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021).
Liu, Z. et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5, 1196–1208 (2021).
Wu, X. et al. A high performance eco-friendly MgAgSb-based thermoelectric power generation device near phase transition temperatures. Energy Environ. Sci. 17, 2879–2887 (2024).
Ying, P. et al. A robust thermoelectric module based on MgAgSb/Mg3(Sb,Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K. Energy Environ. Sci. 15, 2557–2566 (2022).
Ying, P., Reith, H., Nielsch, K. & He, R. Geometrical optimization and thermal-stability characterization of Te‐free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2. Small 18, 2201183 (2022).
Xie, L. et al. Semiconductor–semimetal composite engineering enabling record-high thermoelectric power density for low‐temperature energy harvesting. Adv. Funct. Mater. 34, 2401763 (2024).
Hao, F. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016).
Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 13, 2106–2114 (2020).
Wu, G. et al. Bi2Te3-based thermoelectric modules for efficient and reliable low-grade heat recovery. Adv. Mater. 36, 2400285 (2024).
Qu, N. et al. Interfacial design contributing to high conversion efficiency in Mg3(Sb,Bi)2/Bi2Te3 thermoelectric module with superior stability. Adv. Energy Mater. 14, 2302818 (2024).
Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).
Liu, R., Xing, Y. & Liao, J. et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat. Commun. 13, 7738 (2022).
Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016).
Wu, X. et al. A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs. Acta Mater. 226, 117616 (2022).
Yin, L. et al. Reliable n-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications. Acta Mater. 198, 25–34 (2020).
Sun, Y. et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nat. Commun. 14, 8085 (2023).
Wang, Y. et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure. ACS Appl. Mater. Interfaces 14, 33419–33428 (2022).
Yin, L. et al. CALPHAD accelerated design of advanced full-Zintl thermoelectric device. Nat. Commun. 15, 1468 (2024).
Li, A., Wang, Y. & Li, Y. et al. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat. Commun. 15, 5108 (2024).
Jiang, M. et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds. Natl Sci. Rev. 10, nwad095 (2023).
Lu, X. et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 matrix. Adv. Energy Mater. 10, 1902986 (2020).
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).