Atomic-scale interface strengthening unlocks efficient and durable Mg-based thermoelectric devices (2025)

  • Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article CAS PubMed Google Scholar

  • Zhang, Q., Deng, K. & Wilkens, L. et al. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).

    Article Google Scholar

  • Hu, H. et al. Highly stabilized and efficient thermoelectric copper selenide. Nat. Mater. 23, 527–534 (2024).

    Article CAS PubMed Google Scholar

  • Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).

    Article CAS PubMed Google Scholar

  • Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article CAS PubMed Google Scholar

  • Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Jia, B. et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 384, 81–86 (2024).

    Article CAS PubMed Google Scholar

  • Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article CAS PubMed Google Scholar

  • Xing, T. et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) co-doped GeTe. Adv. Mater. 33, 2008773 (2021).

    Article CAS Google Scholar

  • Liu, C. et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Sci. Adv. 9, eadh0713 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Yu, Y., Xu, X. & Bosman, M. et al. Germanium-telluride-based thermoelectrics. Nat. Rev. Electr. Eng. 1, 109–123 (2024).

    Article Google Scholar

  • Zhang, Z. et al. Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).

    Article CAS Google Scholar

  • Zhou, Z. et al. Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat. Commun. 14, 2410 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Xie, L. et al. Screening strategy for developing thermoelectric interface materials. Science 382, 921–928 (2023).

    Article CAS PubMed Google Scholar

  • Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Xie, L. et al. Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%. Sci. Adv. 9, eadg7919 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Fu, Y. et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy Environ. Sci. 15, 3265–3274 (2022).

    Article CAS Google Scholar

  • Liu, W. & Bai, S. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. J. Materiomics 5, 321–336 (2019).

    Article Google Scholar

  • He, R., Schierning, G. & Nielsch, K. Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv. Mater. Technol. 3, 1700256 (2018).

    Article Google Scholar

  • Liu, W. et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 1, 13093–13100 (2013).

    Article CAS Google Scholar

  • Chen, L., Mei, D., Wang, Y. & Li, Y. Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties. J. Alloys Compd. 796, 314–320 (2019).

    Article CAS Google Scholar

  • Zhang, J. et al. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices. ACS Appl. Mater. Interfaces 15, 22705–22713 (2023).

    Article CAS PubMed Google Scholar

  • Ying, P. et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Liu, Z. et al. Demonstration of ultrahigh thermoelectric efficiency of 7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5, 1196–1208 (2021).

    Article CAS Google Scholar

  • Wu, X. et al. A high performance eco-friendly MgAgSb-based thermoelectric power generation device near phase transition temperatures. Energy Environ. Sci. 17, 2879–2887 (2024).

    Article CAS Google Scholar

  • Ying, P. et al. A robust thermoelectric module based on MgAgSb/Mg3(Sb,Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K. Energy Environ. Sci. 15, 2557–2566 (2022).

    Article CAS Google Scholar

  • Ying, P., Reith, H., Nielsch, K. & He, R. Geometrical optimization and thermal-stability characterization of Te‐free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2. Small 18, 2201183 (2022).

    Article CAS Google Scholar

  • Xie, L. et al. Semiconductor–semimetal composite engineering enabling record-high thermoelectric power density for low‐temperature energy harvesting. Adv. Funct. Mater. 34, 2401763 (2024).

    Article CAS Google Scholar

  • Hao, F. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016).

    Article CAS Google Scholar

  • Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 13, 2106–2114 (2020).

    Article CAS Google Scholar

  • Wu, G. et al. Bi2Te3-based thermoelectric modules for efficient and reliable low-grade heat recovery. Adv. Mater. 36, 2400285 (2024).

    Article CAS Google Scholar

  • Qu, N. et al. Interfacial design contributing to high conversion efficiency in Mg3(Sb,Bi)2/Bi2Te3 thermoelectric module with superior stability. Adv. Energy Mater. 14, 2302818 (2024).

    Article CAS Google Scholar

  • Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).

    Article PubMed PubMed Central Google Scholar

  • Liu, R., Xing, Y. & Liao, J. et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat. Commun. 13, 7738 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016).

    Article CAS Google Scholar

  • Wu, X. et al. A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs. Acta Mater. 226, 117616 (2022).

    Article CAS Google Scholar

  • Yin, L. et al. Reliable n-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications. Acta Mater. 198, 25–34 (2020).

    Article CAS Google Scholar

  • Sun, Y. et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nat. Commun. 14, 8085 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Wang, Y. et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure. ACS Appl. Mater. Interfaces 14, 33419–33428 (2022).

    Article CAS Google Scholar

  • Yin, L. et al. CALPHAD accelerated design of advanced full-Zintl thermoelectric device. Nat. Commun. 15, 1468 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Li, A., Wang, Y. & Li, Y. et al. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat. Commun. 15, 5108 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Jiang, M. et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds. Natl Sci. Rev. 10, nwad095 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Lu, X. et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 matrix. Adv. Energy Mater. 10, 1902986 (2020).

    Article CAS Google Scholar

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article CAS Google Scholar

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article CAS PubMed Google Scholar

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article Google Scholar

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article CAS Google Scholar

  • Atomic-scale interface strengthening unlocks efficient and durable Mg-based thermoelectric devices (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Van Hayes

    Last Updated:

    Views: 6577

    Rating: 4.6 / 5 (46 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Van Hayes

    Birthday: 1994-06-07

    Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

    Phone: +512425013758

    Job: National Farming Director

    Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

    Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.